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FOREWORD

This report was prepared by Mr. George W. Loptien of the Flight
Vehicle Branch, Aeromechanics Division, Air Force Flight Dynamics
Laboratory, Wright-Patterson Air Force Base, Ohio, under Project 2404,
Aerodynamic Synthesis and Flight Research, Task 240416, Unified Flight
Mechanics Technology, Work Unit 24041603, Analysis and Evaluation of

Aero Configuration Advancements.

Winglets appear to offer significant improvement in aerodynamic
efficiency and fuel and operating cost savings. This Report summarizes
basic information concerning winglets and is part of an overall plan to

develop winglet technology for flight test demonstration.

Winglets have been investigated using semispan and full span KC-~135A
models in the NASA/LaRC 8-Foot Transonic Pressure Tumnel. Basic results
from this investigation are presented in this Report. Mr. Stuart G. Flechner,
NASA/LaRC, was the project engineer.
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Basic ‘KC~135A model without winglets

(Wing tips clipped to accommodate mounting
winglets)
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INTRODUCTION

The USAF is interested in reducing the fual requirements and
operational costs of existing and future aircraft. .ethods for improving
aircraft efficiency are continually being investigated and innovative
aerodynamic drag reduction technologies are constantly being sought. A
method suitable for retrofit to existing fleet aircraft is highly desirable.

The winglet concept, developed by NASA/LRC, appears to offer signifi-
cant improvement in aircraft efficiency by reducing aircraft drag, fuel
requirements, and operating costs. Winglets represent the latest state-of-
the-art aerodynamic drag reduction technology and offer significant improve-
ment in aircraft efficiency. Total drag reductions up to 8 percent have
been estimated for the KC-135A aircraft at cruise.

The feasibility of winglets on the KC-135 aircraft has been investi-
gated by the Boeing Commercial Airplane Company under Air Force contract
(Reference 1). This investigation has indicated no basic aerodynamic, struc-
tural, or dynamic problems from winglets on the KC-135. The investigatiom has
indicated a fuel savings of 68,000 gallous per aircraft per year, which results
in a fleet fuel savings of 44 million gallons per year at & cost savings of
17.5 million dollars (40¢/gallon). A KC-135 winglet cetrofit investigation
indicated the cost for retrofitting winglets to be $66,000 (1977 dollars) per
aircraft, or a fleet retrofit cost of about 42.5 million dollars.

The aerodynamic characteriatics of semispan and full-span KC-135A wind

tunnel models with different winglet concepts have been investigated in the
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NASA/LRC 8-Foot Transonic Pressure Tumnel. Data from these investigations
have been provided to the Air Force Flight Dynamics Laboratory and some

basic results are presented in this Report.

MODEL AND TEST APPARATUS

Semispan Model.

An 0.070-scale semispan wind tunnel model was constructed by NASA/LRC
(Figures 1 and 2)* A semispan model configuration was selected to obtain
maximum Reynolds number on the winglets.

The 0.070-scale semispan model consisted of the right half of the
KC-135A aircraft. The wing was constructed basically of aluminum and was
designed to deflect under airloads to simulate aeroelastic deflection. The
wing was designed so that the tip deflected approximately the same as the
tip of the full-scale airplane at cruise conditions. The model included
the wing, flow-through nacelles, and fuselage (no tail), although only the
wing and nacelles were attached to the balance system. The basic KC-135A
alrcraf: wing has a sweep angle at the quarter chord of 35 degrees, an aspect
ratio of 7.035, a taper ratio of 0.33, a 7-degree dihedral, two degrees
positive incidence at the root, and no gecmetric twist. The thickness/chord
ratio varies non-linearly from 15 percent at the wing-fuselage juncture to
9 percent at the trsiling edge break station and then remains constant &t
9 percent to the tip.

Te accommodate mounting the winglets, a smell portion of the model wing
tip vas cut off, reducing the aspect ratio of the basic wing slightly. In
addition, the NASA and Boeing wiuglets were mounted at slightly different
spanwise locations so that the span of the basic wing was slightly differeat.

*Figures are located at end of report.
2
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The exposed model wing semispan was i3.92 i{nches for the NASA basic wing
(Figure 2) and 49.56 for the Boeing basic wing. The aspect ratio of the
KC-135A wing was reduced froam 7.035 to 6.86 for the NASA basic wing and

6.98 for the Boeing basic wing. The slightly different spanwise location of
the winglets should have only minimal effect on the aerodynamic characteris-
tics. A simple analysis (Appendix A) indicated a loss in aircraft lift-drag
ratio of about -0.07, or about 0.4 percent, with removal of the tip portion
of the Sasic wing.

The original NASA winglet concept was composed of upper and lower
winglet fins (Pigure 3); however, both upper winglets (only) and upper plus
lower winglet combinations were investigated., The Boeing winglet configura-
tion tested (Figure 4) was slightly different from the configuration
investigated analytically (Reference 1) because of an error in model fabri-
cation. As a result, the winglet configuration tested had a cant angle of
6 degrees instead of 20 degrees. The wing tip extension model (Figure 2)
was an extension of the basic wing sized to produce approximately the same
iancrease in wing root bending moment as the NASA upper plus lower winglet
configuration., The span of the tip extension was 3.0 inches.

Fixed-position leading and trailiang edge flap configurations were in-
vestigated on the semispan KC-135A model (Figure 5). These flaps vere only

i representative and did not conform to the flap geometry of the KC~135A
ajirplane. The trailing eodge flaps were located just inboard of the nracelle
§ centerlines and had a chord of 10Z of the wing chord. Flap deflection for
| the leading edge flaps was 70 degrees and for the trailing edge flape 25

degrees.
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Full Span Model.

The basic 0.035 scale full span KC-1354 model for the low speed
investigation (M = 0.3) (Figure 6) was equipped with a wing having flaps
and ailerons. The wings were constructed from steel and were not designed
to deflect aercelastically. Three wing flap deflections 0, 30, and 50 degrees,
and three aileron deflections 0, ¥10, and *20 degrees could be set (Figure 7).
The model had four strut-mounted, flow-through nacelles attached to the wings.
To accommodate mounting the winglets, a swall portion of the model wing tips
were cut off, reducing the aspect ratio of the basic wing from 7.035 to 6.98.
A variable incidence horizontal tail could be set at incidence angles of O,
-4, and -10 degrees.

Because of the basic KC-135A model body comstruction, the strain gage
balance was located so far aft that the balance pitching moment limit was
exceeded at very low 11ift values at high speed. Consequently, the KC-135A
model body was replaced with a body that located the balance further forward.
This body was slightly larger than the KC-135A model body and was circular
instead of oval in cross section; however, these slight differences should
have only minimal effect on the aerodynamic characteristics. Because of the
coustruction of the body, the horizontal aud vertical tails could not be
attached, and all high-epeed tests were made without horizontal aand vertical
taiis. The wing for the high-speed wodel was coastructed from steel and was
not designed to deflect seroelastically. The wing was constructsd without
flaps or ailerons and had a portion of the wing tips cut off to §ccounodate
mounting the vinglets. Four atrut-mounted, flow-through nacelles were

attached to the winga.
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Test Apparatus.

The experimental investigation was conducted in the NASA/LRC 8 Foot
Transonic Pressure Tunnel, a corntinuous-flow, single-return, variable-
pressure facility with a closed slotted test section. The Mach number
range is from about 0.3 to 1.35.

The 0.070-scale semispan KC-125A model was attached to a balance system
located outside the left wall of the tunnel test section and was mounted in
the upright position. Only the wing, nacelles, and winglets were attached
to the balance. The fuselage was attached to a turntable in the left wall
of the test section and pitched with the wing, however, the fuseiage was
coupletely isolated and no fuselage loads were recorded by the balance. The
fuselage had a slot through whick the wing passed.

The 0.035-scale full-span KC~135A model was moucted in the center of
the tunnel test section on a gting-supported six-component strain gage balrsce
system. Aerodynamic forrnes and moments were read out on magnetic tape which

vas computer processed.

DISCUSSION

Hinglets

Winglets are small, cambered fins located at the wing tips {Figures 1
ad 6). Tvo winglet configuratiocns developed by NASA/LRC and the Boeing
Commsercial Airplane Coupany are shown fn Figures 3 and 4. The original NASA
wioglet configuration had fins both abrve and below the wing planme (Figure 3).
The upper fin was larger and vas locsted rearvard on the tip chord; the
trailing edge of the oot chord section wes located at the wing tip traiitug

edge. The Boelng Company coufiguration was developed analytically snd had

et e
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only an upper fin (Figure 4) located rearward ecn the tip chord. A basic
difference is the leading-edge strake which is intended to reduce the
twist required at the winglet root and facilitate blending the
winglet into the wing. The NASA upper winglets had a trapezoidal planform
with an area 3.8% of the exposed basic wing area, a root chord 65% of the
wing tip chord, a tip chord 21% of the wing tip chord, s height equal to
the wing tip chord, and a leading edge sweep angle of 38 degrees. The
upper winglets were untwisted, cambered outward (upper surface inboard),
inclined outward from vertical, and were positioned so that the trailling
edge of the root section was located at the wing tip trailing edge. The
lower surface winglets had a trapezoidal planform with an area 0.6% of the
exposed basic wing area, a span 23% of the wing tip chord, a root chord 40X
of the wing tip chord, and a leading edge sweep angle of 52 degrees. The
lower winglets were cambered inward, inclined outward from the vertical,
had an incigence of -7 degrees (toed in), were twisted about the leading
edge wi-u 4 degress of wasiout at the tip, and were positioned so that the
leading edge was locatad at che wing tip le'diug « "3e. Both upper and lower
winglets had 9% thick GA(W)-2 airfofl sections.

The Boeing winglets had a trapezoldal planform wich an area of 3.5%
of the exposed basic wing arez, a root chord 60% of the wing tip chord, a
height 13.%% of the wing (not exposed) semispan, and a winglet leading edge
sweep angle of 37 degrees. The Boeing winglets had a strake at the leading
edge, vere cambored outward, were inclined 6 degrees outward from vertical,
and were positioned so that the treiling edge of the root chord was located

ar the wing trailing edge. The wvinglets had a 6% thick, Boeing developed,

supercritical airfoil and incorporated twist in the vinglet root.
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Results of Boeing Investigations

In Reference 1, potential performance improvements from winglets
were investigated analytically. Results of this investigation indicated
an 8.4 percent improvement in cruise M(L/D), a net improvement in range
factor of 8.} percent, and an increase in overall empty weight of 592 1lb.
Performance improvements trom equal area tip extensions were also investi-
gated.

The primary effect of winglets and tip extensions is to reduce induced
drag, and, consequently, reduce total aircraft drag. However, in addition
to performance gains frow winglets or tip extensions, their effects on the
aircraft structure must be considered. The weight of the winglets and their
attachment structure will cancel some aerodynamic benefit and tha local and
wing root bending wmoments will be increased, vossibly increasing wing weight.

Various winglet parameters were investigated analytically to determine
the potential aerodyuamic improvement on the KC-135 aircraft at cruise
conditions. For all cases {nvestigated, the winglets were located at the
tip on the upper wing surface only. This investigation indicated that winglet
chordwise location, sweep, taper ratio, and area do not signlficantly affect
the overall aerodynamic characteristics of the KC-135 aircraft. Winglet
length and cant angle appear to be the most significant paraseters (Figures
8 and 9).

For the vinglet length selected fer the KC-135 aircraft (0.135 bIZ), a
reduction in the indr-ed drag of about 16 percent and an increase in the wing
root bending mowmont of about 4 percent vas indicated at cruise (Figure 8) for
a vinglet with ao cant. As the winglet is canted outvard (Pigure $), the

induced drag is further reduced; however, the wing root bending moment is
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increased. For the KC-135 winglets (cant 20 degrees), the induced drag
reduction was about 17 perceunt and the wing root bending moment increase
about 6 percent.

A number of different equal area tip extensions were also investigated
(Figure 10), Comparison of the induced drag reduction and wing root bend-
ing moment increase for zero ceat winglets and wing tip extensions is shown
in Figure 11. When the winglet and tip extension produce the same induced
drag lmprovement (14% for an G.135 ?/2 winglet with no cant), the tip exten-
sion had 31 percent greater wing root bending moment thaw the winglet.

When the root bending moment of the winglet and tip extension are =aqual,
the induced drag was reduced about 22.9 percent more by the winglet than by
the tip extension. The winglet gives greater aerodynamic improvement or a
lighter structuve.

Both winglets and wing tip extensions increase the aircrafr nose-down
pitching moment. Figure 12 shows that the nose-down pitching moment change
of the KC-135was considerably greater for a tip extension than for a corres-
ponding zero cant winglet. When the winglet and tip extension produce the
same induced drag imyrovement (14%) | the pitching moment change from tha
tip extension was about 80 percent greater tham that of the winglet. For
g equal wing root bending momant, the piteching mowment change from the tip
extension was about 35.7 percent. Both winglets and tip extensions increased
the aircraft longitudinal stability.

% Aerodynanmic DRata

Aetodynamic foxce snd mouent measurements obtained on the KU«1354

models are presented in coefficient form in the stability axis svstem and

are teferenced to the wing area, spau, and wing reference chord. The data
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have been corrected for tununel flow angularity, tunrel wall, and blockage
effects. Moments are presented about orthogonal axes through the moment:
reference center. The wing root bending moment is the rolling moment of the
projecting semispan wing about an axis parallel to the plans of symmetry at
the wing fuselage juncture. The incremental aerodynamic characteristics of
the different ~onfiguratioms have been obtained from large-scale plots.

Data without winglets are for the wing tip clipped configuration.

At cruise conditions, M = 0.77 at 30,000 feet, the overall KC-135A
airplane cruise lift coefficient is about 0.426. At take off, flaps are
deflected 30 degrees and the lift coefficient is about 1.22, and at landing,
the flap deflection is 50 degrees and the lift coefficient about 1.0.

Winglet Configuration.

Results from the semispan wind tunnel tests at high subsonic speed
(Pigure 13) indicated the greatest drag reductions with the NASA upper plus
lover winglet configuration; however, drag reductions of similar magnitude
were found with the upper winglet configurations at cruise lift coefficients.
For a cruise lift coefficient of 0.426, a total drag reduction of about 5.4
percent was indicated with the Boeing winglet coniiguration (oy™ 6 degrees)
and about 6.9 percent with the NASA upper (¢~ 15 deg-ees) and the NASA upper
plus lower (Qy= 15 degrees, o= 36 degrees) winglet coafiguratioas.

At lov speed, coatrary to the high-gpeed results, the greatest drag
reduction wvas found with the NASA upper winglet configuration (Figure 14).
Analytical results froe the Noaplanar Lifting Syetems Progran (Referente 2)
also indicated the ilizgie upper winglet configuration to be slightly superior

in reducing induced drag. References 1 aand 3 indicste that the effect of the
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lower winglet is gererally favorable, but that improvement in overall

performance is only marginal. Because gains from the lower winglet are

small and structural complexity increased, the lower winglet was elidinated
from later NASA KC-135 winglet configurations. However, winglet effects
are most likely configuration dependent, and the dual winglet configuration
could prove advantageous for other aircraft.

Cuntrary to results from the semispan model tests, the full-span
KC-135A model tests indicatedthe greatest drag reduction generally with the
NASA upper winglet configuration (Figures 15 to 2Q); however, drag reductions
of similar magnitude were achieved with the other winglet configurations
investigated. In addition, it must be considered that the cant angle of

the Boeing winglet configuratlon was six degrees, and that grecater drag re-

duction could be achieved if the cant angle was increased. For cruise condi-~

tions, M = 0,78 and CL== 0.426 (Figure 19), a total drag reduction of about
5.3 percent was obtained with the Boeing and NASA upper plus lower winglet
configurations and about 6.5 percent with the NASA upper winglet configuraticn.
At low speed (Figure 15), drag reduction of the KC-135A model with NASA
upner winglets at CL= 0.426 was approximately 3,0 percent, about half of the
drag reduction achieved at cruise.

For 1ift coefficients less than about 0.2, the incremental winglet

drag was positive, indicating the profile drag i{ncrease to be greater than the

induced drag decrease generated by the winglets. For lift coefficlents

greater than about 0.2, the incremental total drag becowes negative indicating
the decrease induced drag from the winglets to be greater thaa the increase

in profile drag, resulting in an overall drag reduction for the KC-135A
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model. As the drag reduction from winglets is primarily induced drag,
these devices can be expected to be more effective at higher lift coeffi-
cients, and, as shown by Figures 15 to 20, drag reductionwas considerably
greater zt higher 1ift coefficients. At cruise Mach number (Figure 19),
drag reduction varied from about one perceant at CL=O.2 to about 13 per cent
at CL- 0.8 for the NASA upper winglet configuration. The drag reduction
achieved with the different winglet configurations on the KC-135A model at
C;=0.426 with Mach number is shown in Figure 21,

The effect of the different winglet configurations on the lift of the
KC-135A model (Figures 22 to 27) was to generally increase the 1lift about
one to three percent. At cruise 1ift conditions (Figure 26), the increase
in 11ft of the KC-135A model was about 2.5 percent with all of the winglet
configurations investigated. Variation of the incremental 1ift of the KC-135A
model with the different winglet configurations with Mach number is shown in
Figure 28 and variation of the incremental 1lift curve slope with Mach number
is shown in Figure 29. The lift curve slope of the KC-135A model was generally
increased about one to three percent by the different winglet configuracions.
At low Mach numbersz, the increase in lift curve slope appears to be slightly
greater with the NASA upper plus lower winglet configuration; however, at
higher Mach numbers, the increase 1is about the same as with the upper winglet
configurations. Because of the increased lift with the winglets, the aircraft
can fly at a reduced angle of a:tack which will reduce the profile drag. At
cruige conditions, the reduction in angle of attack of the KC-135A model with
winglets was about ~0.1 degree (Figure 30).

A measure of the aerodynamic efficiency is the lift-drag ratio. The

increase in the maximus untrimmed lift-drag ratio of the KC~135A model with

11
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the different winglet configurations is showu in Figure 31 for different
Mach numbers. The increase in maximum untrimmed lift-drag ratio was about
the same with all of the different winglet configurations investigated.

At crulse conditions, the increase in the model maximum untrimmed 1ift-
drag ratio because of winglets was about 8 percent.

The effect of the different winglet configurations on the pitching
moment was to increase the nose down pitching moment and increase the longi-
tudinal stability of the KC-135A model (Figures 32 to 37). At cruise 11fr
conditions, the increase in nose-~down pitching moment was about 13 percent
for the model with the NASA upper and Boeing winglet configurations and about
16 percent for the NASA upper plus lower winglet configuratiou. Variation of
the increase in nose-down pitching moment of the KC-135A model with the differ-
ent winglet configurations with Mach number is shown in Figure 38 for (p = 0.426.

The effect of winglet configuration on the model aerodynamic characteris-
tics at low speed was also investigated at a flap deflection of 50 degrees and
a horizontal tail incldence angle of -10 degrees (Figures 3% to 41). The
greatest drag reduction was found with the upper winglet configuratiouns
(Figure 39), and, as shown, the drag reduction vas essentially the same .for
both configurations investigated. At Cy = 1.0 (landing condition), Figure 39
indicates a total drag reduction of about 2.5 percent for the upper winglet
configurations and about 1.0 percent for the NASA upper plus lower winglet
configuration. Because of the difference in cant angle, the model tests at
GF = 0 (tail off) generally indicate & slightly greater drag reduction with
the NASA upper winglet configuration then with the Boeing winglet configuration.
No explanation is known for the differemt behavior at 6F= 50 degrees. The

effect of the different winglet configurations on the lift of the model at

12
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6F~ 50 degrees, iuﬂ ~10 degrees (Figure 40) was to generally increase the
1ift about 1 to 2 percent, except at very high lift coefficients. The
effect of the winglets on the pitcihing moment at 6F= 50 degrees, 1H= -10
degrees (Figure 41) was to increase the nose-down pitching moment and

increase the longitudinal stability of the model.

Wing Root Bending Moment

Potential aerodynamic benefits from winglets appear to be significant;
however, their total impact on the performance and structure of an asircraft
has to be evaluated. The weight of the winglets and their attachment structure
offset scme of the aerodynamic bhenefit, and both the local and wing root bend-
ing moment will be increased. To accommodate the increased moments, wing
welight may have to be increased, and an assessment between the benefits of
improved aerodynamic performance and increased wing weight must be made.

To evaluate the effects of winglets on the K(~-135 aircraft, all effects
on the aircraft structure have been assumed to be proportional to measured
model wing root bending moments. The wing root bending moments of the semi-
span KC-135A wodel with and without winglets were measured by a strain gage
built into the rodel wing. For this case, the wing root bending moment was
the rolling moment of the exposed semispan wing. At cruise conditions (M =
0.78, CL- 0.426) (Figure 42), the measured increase in the wing root bending
moment of the semispan KC-135A wodel was about 2.5 percent with the Boeing
winglet configuration and about 3 percent with both the NASA upper and the
NASA upper plus lower winglet configurations. The Poeing analytical investi-

gation indicated an increase of about 4.8 percent (Figure 9) iu the wing root

bending moment for a cant angle of 6 degrees at cruise conditions, a value
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somewhat greater than the measured wing root bending moment. At low speed
(Figure 43), the increase in the wing root bending moment of the KC-135A
model with the NASA upper plus lower winglet configuration was approximately
6 percent for wing lift coefficients from about 0.6 to 0.95.

Winglet Incidence

As winglets are basically small, cambered, wings flying at an angle of
attack determined by the wing tip cross flow, winglet incidence can affect
the efficiency. To determine winglet incidence angle, the different winglet
configurations were investigated at several incidence angles.

The eifect of winglet incidence on the drag of the KC~135A model with
the NASA upper and the Boeing winglet configurations at near cruise conditions
is shown in Figures 44 to 46. Incidence angle, within the range investigated,
influenced the drag reduction characteristics of the winglets only very slightly.
An incidence angle of -4 degrees was selected for the KC-135A model with the
NASA upper winglet configuration and an angle of -1 degree was selected for
the model with the Boeing winglet configuration. The bulk of the data obtained
from the KC-135A model with winglets was for these incldence angles. Results
from tie semispan KC-135A model tests with the NASA upper plus lower winglet
configuratiscm also indicated the greatest drag reductions for an upper wing-
let incldence angle of ~4 degrees.

The effect of lower winglet iuncidence on the drag of the KC-135A model
with the NASA upper plus lower winglet configuration at near cruise conditions
is shown in Figurar 47 :rd 48. The upper winglet incidence angle was fiied
at -4 degrees. The drag reductinn of the NASA upper plus lower winglet con-
figuration was improved slightly as *he lower winglet incidence angle was

reduced. At M = (.78, the drag of the madel was reduced about 4.7 percent
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at a lower winglet incidence angle of -8 degrees and about 5.1 percent

for incidence angles from about ~7 to -5 degrees. A lower winglet incidence
angle of -7 degrees was selected for the NASA upper plus lower winglet
configuration and most data are for this incidence angle.

Winglet Cant

As indicated by the Boeing analytical investigations, winglet length
anud cant angle appear to be the most siguificant geometric parameters affect-
ing the overall alrcraft aerodynamic characteristics. All of the (upper)
winglets investigated were essentially the same length, and winglet cant angle,
per se, was not lnvestigated. However, as the cant angles of the different
winglet configurations varied somewhat, some deductions concerning cant angle
can be made. Because the basic purpose of winglets is to reduce drag, drag
reduction at cruise has been selected at the primary criterion for winglets.

The effect of cant angle on the drag of the KC-135A model with the
different upper winglet configurations at cruise lift conditions (Figuree 49
and 50) was to reduce the drag as the winglet was canted. The drag of the
model was reduced about 5.3 percent with a cant angle of 6 degrees, and about
6.5 percent with a cant angle of 12 degrees (Figure 50). Linear extrapolation
of the curve to zero cant (vertical winglets) indicated s drag veduction of
about 4.1 perceut.

The effect of lower winglet ceat angle on the drag of the KC-135A model
with the NASA upper plus lower winglet configuration at cruise lift conditions
(Pigures 51 and 52) shows valy a very slight change in the drag of the model
as the lower winglet is canted. Pigure 52 indicates a drag reduction of about

5.3 percent with a lower winglet caat angle of 12 degrees and shout 5.9 percent
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with a cant angle of 36 degrees. Linear extrapolation to zer—- cant augle
indicates a drag reduction of about 5 percert with the lower wingle:
vertical.

Wing Tip Extensions

The effect of wing tip extensions on the KC-135 aircrzft was investi~
gated analytically in Reference 1. Results of this investigation indicate
that an equal area wing tip extension can reduce the induced drag about 10
percent more than an 0.135 b/2 zero cant winglet (Figure 9), but that the
wing root bending moment is more than doubled.

A wing tip extension was investigated with the semispan KC-135A model.
The configuration investigated (Figure 2) was designed to produce wing root
bending momeunts similar to those of winglets and was not optimized for
maximum drag reduction.

Comparison of the drag reduction of the semispan model with the tip
extension and with the different winglet configurations (Figure 53) shows
that the drag reduction from the tip extension was comsiderably less than
from the vinglets. At cruise conditions, the total drag reduction with the
tip extension was about 3 percent, while that from the winglets varied from
about 5.4 percent with the Boelng configuration to about 7 percent with the
NASA upper and upper plus lower winglet configuratioms.

Comparison of the measurad wing root bending moments of the semispan
model with the tip extension and with the different winglet configuratioas

(Pigure 54) shows that the bendiag moment from the tip extensica is greater

than those from the wiaglet configuraticas. At cruise conditions, the

weasured increase in the wmodel wing root bending mowent was about 3.5 perceat
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for tha tip extension, about 3.0 percent for the NASA upper and upper plus
lower winglet configurations, and about 2.5 percent for the Boeing winglet
configuration.

Comparison of the increase in 1ift and nose-down pitching moment of
the semispan model with winglets and tip extension is shown in Figures 55
and 56, respectively. The increase in 1ift was approximately the same with
both the tip extension and the winglet configurations. At cruise conditions,
the increase in lift was about 2-3 percent. However, as shown by Figure 56,
the change in nose down pitching moment was considerably greater with the tip
extension. Both the tip extension and the winglets increase the nose dowm
pitching moment and increase the longitudinal stability of the model.

Flaps and Horizontal Tail Deflection

Comparison of the drag reduction achieved with the NASA upper winglet
configuration at low speed and CL- 1.0 (Figure 57) for different horizontal
cail and flap deflections indicated horizontal tail incidence angle to have
only small influence on the drag reduction, and that the drag reduction was
proportiocnal to flap deflection, varying from about 12 percent at zero deflec-
tion to about 2.5 percent at 50 degrees deflection. The increase in lift
from the winglets (CL- 1.0) {Pigure 58, was basically nmot affected by hori-
zoutal tail incidence, but becomes greater with increased flap deflection,
verying from about 0.5 percent at 699 0 to about 2 parcent at 6?‘ S0 degrees.
The increage in lift curve slope (Figure 59) varied from about 1 to 3 parceat
with the greatest increase occurring at 3D degreas flap deflectfca. The in~
croase in untvimmed maximus lift-drag ratio of the model (Figure 60) wvas
easentially not influsnced by tail incidence, but was decreased by flap

17
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deflection. The increase in lift-drag ratio ranged from about 7.5 per-
cent at zero flap deflection to about 3.5 percent at 50 degrees flap deflec-
tion. The effect of horizontal tail incidence and flap deflection on the
model incremental pitching moment is shown in Figure 61. The model incre-
mental pitching moment was not greatly affected by flap deflection, but

wag somewhat more negative at a tail incidence angle of -4 degrees than

at zero and -10 degrees.

Lateral-Directional Stability

An important consideration of winglets is their effect on the lateral
and directional stability characteristics. The effect of the different wing-
let configurations on the lateral and directional characteristics of the
KC-135A model is shown in Pigures 62 and 63 for GP = 50 degrees. All of the
winglet configurations affected the lateral-direcu{enai characteristics about
the same and always increased the laterai and directional stability of the
model.

Alleron Deflection

The effect of aileron deflection on the lateral-directional character-
istics of the KC-115A model with winglets is showm in Figures 64 to 69.
The effect of aileron deflection on tlhie rolling moment of the model
wvith and without winglets i¢ shown in Pigures 64 and 65 for flap deflectiouns
g of 20 and 50 degrees, respectively. The winglets increased the outboard
| ailevon affectivenage and the iucrease in effectiveness is essentially con-
staat across wost of the lift range. At CL = 1.0 to 30 degrees flap deflection
% {Pigure 64), the increasc in the rolling moment was about 3 and 6 perceunt for

aileron deflections of 10 and 20 degrees, respectively. At cL e 1.0 and S50

3 degrees dr 'lection (Figure 65), the increase in the volling wmoment was about

10 and 7 uerceant for 10 and 20 degrees alleron deflection, respectively.
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The effect of aileron deflection on the yawing moment of the model
with and without winglets is shown in Figures 66 to 69 for flap deflections
of 30 to 50 degrees. There is essentially no change in yawing moment with
aileron deflection.

Winglet Loss

The loss of one winglet, e.g., structural failure or combat, could
quite possibly be detrimental to the aircraft safety or performance.

To investigate the effect of winglet loss, the KC-135A model was tested
with a NASA upper winglet on the left wing tip only. This investigation was
made for a flap deflection of 50 degrees and a horizontal tail incidence angle
of -10 degrees.

The most obvi.us effect of the loss of a winglet is on the aircraft
lateral and directional characteristicas. Consider, for example, a KC-135
aircraft with winglets flying in equilibrium, and suddenly the right winglet
is lost. The change in yawing moment and rolling wmoment with the loss of the
right winglet is shown in Figures 70 and 71, respectively. The change in yaw-
ing moment of the KC-1354 model was alwsys negative over the lift coefficient
range investigated, while the change in rolling woment was alwayp positive,
requiring right rudder and left ailerons to maintain aircraft equilibrium.

As shown by Pigure 72, there was eaéencially no change in the yawing mozment

slope parameter, of the KC-135A model wvhen ore winglet was lost; however,

C“B

as shown by Pigure 73, there wvas a slight positive shift of the rolling

aoment pavameter, clB' At Cy = 1.0, the change 1in CIB wvas about 25 perceant.
The effect of the loss of a winglet on the loungitudinal aerodynamic

charscteristics is showa in Figures 74 to 76. The lift of the KC-135A wodel
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was decreased up to about 1 percent (Figure 74) and the drag increased up to
about 2 percent with the loss of a winglet (Figure 75). The effect of the
pitching moment (Figure 76) was to increase the nose-down pitching moment

even more than the original two winglet configuration. At CL= 1.0, the

change in nose-down pitching moment was about 50 percent greater than for

the model with two winglets. In view of the large nose-down pitching moment
introduced by winglets on the KC-135A model, i: is surprising that removal of
one of the winglets further increased the nose-down pitching moment. It would
be expected that removal of one winglet would relieve the nose-down pitching
moment somewhat, but the data do not indicate this.

Full-Scale Wingiet Performance

At full-scale flight conditiouns, the total drag reduction from winglets
should be somewhat greater than that measured at test conditions because of
decreased skin friction drag and the increased lift from winglets which per-
mits the airvcraft to fly at a lower angle of attack decreasing the profile
drag. Additional effects which influence the full-scale aircraft drag in-
clude trim drag changes and excrescence drag. The effect of winglets on the
full-scale alrcraft can therefore be apgsumed to be expressed by the following

equation,

- + +* O + !
Cp with b wiTHOUT ACDWINGLETS Apgeare ¥ ““ogxores

WINGLETS WINGLETS
* ACDPROFILE ' 6CDTRIN
Full~scale drag polars for the KC-135 afrcraft with winglets have
been derived from wind tunnel and flight test data using the above equation
{Figure 77). The aircraft has bean assumed to be equipped with winglets

having the NASA upper winglet coafiguratfon. The winglet incremental drag
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a3 been taken from the data shown in Figure 19. ACDTRIH and ACDEXCRES

have been shown to be close to zero and estimates of ACDSCALE and ACDPBDFILE
have indicated values of -0.00022 and -0.00015 for these coefficlents. As
shown by Figure 77, the full-scale drag improvement with winglets has been
estimated to be about ACD- =0.0020 or about 8.2 percent of the aircraft
cruise drag. The improvement in the aircraft maximum lift-drag ratio because

of the winglets (Figure 78) was about 1.68 o7 about 9.5 percent.

CONCLUSIONS

The aerodynamic characteristics of semispan and full-span K(C=135A
models with winglets and 31 tip extension have been investigated in the NASA/
LRC 8-FPoot Transonic Pressure Tunnel. Sowme basic results from these investi-
gatiocns have been pregsented in this Report. The foljlowing conclusions have
been derived.

1. Results from semispan wind tunnel tests at hich subsonic speeds indicated
the greatest drag reductions frot the NASA upper plus lower winglet configura-
tica; however, drag reductious of similar magnitude were found with the upper
winglet configuratious at cruise lift coeificients.

2. Contrary to the gemispan model tests, full-spsn model tests indicated the
greatest drag veductious at high subsonic speeds with the NASA upper wiuglet
coafiguration. At cruise conditious, a total drag reduction of about 5.3 per-
cent vas found for the model with the Boeing aad NASA upper plus lower winglet
configuratfions and a reduction of about 6.5 percent for the model with the
NASA vpper winglet counfiguratioa.

3. At low spezds, a totel drag reduction of about 3.0 percent was found for

the full-span model with the NASA upper winglet coafiguratiou.
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4., Drag was decreased with upper winglet cant. The drag of the full-span
model was decreased about 5.3 percent with an upper winglet cant angle of
6 degrees and about 6.5 percent with a cant angle of 12 degrees.
5. Drag was decreased with lower winglet cant. The drag of the full-span
model was decreased about 5.3 percent with a lower winglet cant angle of
12 degrees and about 5.9 percent with a cant angle of 36 degrees.
6. Results from semispan model tests at high subsonic speeds indicate the
drag reduction from winglets to be greater than from a wing tip extension
configuration. At cruise conditions, the total drag reduction of the semi-
span model with the tip extension was about 3 percent while reductiou from
the winglets varied from about 5.4 to 7 percent.
7. At high subsonic speeds, the increase in wing root bending moment of the
sémispan KC-135A model was greatest with a wing tip extension and least with
the upper winglet configurations. At cruise counditions, the increase im
wing root bending moment varied from about 2.5 percent with the Boeing wing-
let configuration to about 3.5 percent with the tip exteasicun.
8. At cruise conditiocas, winglets generally increased the lift of the model
about 1 to 3 percent.
9. At cruise conditioas, winglets increased the model untriemed maximum lift-
drag ratio about 8 percent.
10. Both winglets and tip extensions incresse the ncae-down pitching motent
and increase the lougitudinal stability; however, the increase in pitching
mosent vas considerably greater for the tip extension. At cruise coaditioas,
the increase in nose down pitching moment was about 13 percent for the full-
span model vith NASA upper and Boeing winglets tnd about 16 percent with the

HASA upper plus lower wvianglet configuratica.

22
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11. At M= 0,30 and CL' 1.0, total drag reduction of the full-span model
varied from about 12 percent at zero flap deflection to about 2.5 percent
at 50 degrees flap deflection.

12, At M = 0.30, the untrimmed maximum lift-drag ratio of the full-spamn
KC-135A model with winglets was increased about 7.5 percent at zero flap
deflection and about 4 percent at 50 degrees flap deflection.

13. Winglets increased the directional and lateral stability of the full-
span KC-135A model.

14. Winglets increased the aileron effectiveness of the full span model.
At M = 0.30 and CL = 1.0, the increase in rolling moment was about 10 and 7
percent for 10 and 20 degrees aileron deflectiom, respectively.

15. The change in the aerodynamic characteristics of the KC-135A wich the
loss of one winglet appears to be sufficiently small so as not to iapsir
aircraft capability or safety.

15. Estimated viunglet effects at cruise flight conditions indicated a re-

duction in drag of 8.2 percent and an increase in (L/D)HAX of 9.5 percent.
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APPENDIX A
EFFECT OF WING TIP REMOVAL
ON BASIC KC-135A WING
To accommodate mounting the winglets, a small portion of the model
wing was removed, changing the wing span, ares, and aspect ratio.
Consider the following sketch, where subscript 1 denotes the original wing

and 2 deaotes the wing shortened to accommodate the attachment of winglets.

b]/z et
baje —™
¢ TIP REMOVED TO
ATTACH WINGLETS
Lift can be expressed as
¢, = ML, o = M ()
i qS1 2 qu
where, at cruise, Ll = L2 = W, and
S
¢, =C 1
2ol T @)

Drag for the corresponding conditions can be expressed as,
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2 2
= = +
cDl cDo + ¢ , CDZ cDO cL2 )
1 AR, e
171 ﬂARze2
where, CDO = CDO El (4
2 1 S2
4, c. =c. s, + ¢ g (5)
and, &y p. “1 L, °1
2 Ol‘g— 1
R
2 m 82 AR2 e2

From flight data for the KC-135 aircraft at a cruise CL of 0.426, M = 0.78,
6

b

and a Reynolds number based on the mean aerodynamic chord of 42 X 10

C. = 0.4260, C_ = 0.0241, e = 0.7491

Ll D1

which gives

C2
CDl = CDP + L1 = (0.0241
1 ﬂARlel
or, CD = 0.0241 - (0.4260)2 = 0,0241 - 0.0110 = 0.0131
Pl m(7.035) (0.7491)

From equation (2) the corresponding lift coefficient for the alrcraft with

the tip removed is

c. = 0.4260 (2433) = (,4279

L 2422

2

and the corresponding drag coefficient from equation (3) for the same wing

efficieucy factor

¢, = 0.0131 (zasa + (0.4279)°
2 2422 7( 6.98)(0.7491)

St s L

O BTN e

urif

= 0.0132 + 0.0111 = 0.0243

.
y

Consequently,
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@/, =

and, (L/D)1 -

a loss in aircraft lift-drag ratio ¢f -0.067 or a loss of 0.4 percent.

0.4279
48« 17,609
0.4260
0.0241 ~ 17-676
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APPENDIX B

CHARACTERISTICS OF THE BASIC KC-135A MODEL .

To investigate the aerodynamic effects of different winglet configura-
tions on the KC~135A model, it was necessary to determine the aercdynamic
characteristics of the basic KC-135A model. To accommodate mounting the
winglets a small portion of the model wing tips were cut off, reducing the
aspect ratio of the basic wing from 7.035 to6.98. An analysis (Appendix A)
indicated a loss in aircraft lift-drag ratio of about —0.067, or about 0.4
percent, with the wing tips removed.

The variation of the lifc of the basic model with angle of attack is
shown in Figures 79, 80, and 81 for fiap deflection of zerc, 30 and 50
degrees, Extrapolation of Figure 79 (M = 0.30) to zerv lift indicates the
angle of zero lift of the model at zero flap deflection and zero horizontal
tail incidence angle to be about -3 degrees. The 1lift curve slope varied
from about 0.0796 at M = (.30 to about 0.1008 at M = 0.80 for the model
with the tail off. Variation of the drag with lift is shewn in Figures 82,
83, and 84, At zero flap deflection and zero horizontal tail incidence,
Figure 82 indicates the zero lift drag coefficient at M = 0.30 to be about
0.0218, the minimum drag coefficient to be about 0.0210, and the lift co~
effizient corresponding to the minimum drag coefficient to be ahout 0.075.
For cruise conditions, Figure %4 indicates the drag coefficient of the wodel
wichout tail to be about 0.0260. Variation of the model pitching uoment
with 1ift is shown in Figures 85, 86, and 87. At low speed (Figures 85

and 86), the slope of the pitching moment nurves in the linear region was

essentially unaffected by horizontal tail incidence or flap deflection.
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For zero flap deflection (Figure 85), the zero-1ift pitching moment co-
efficient was about ~0.047 and the slope, de/dCL, about -0.220. As

shown by Figures 88 to 91, horizontal tail incidence and flap deflection
had only small effect on the yawing and rolling moment of the basic KC-135A
model except at high lift coefficients, Figures 92 and 93 show that the
slope of the yawing and rolling moment curves was also little affected by

horizontal tail incidence except for high 1ift coefficients.
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APPENDIX C

COMPARISON OF FULL-SPAN AND SEMISPAN MODEL DATA

Aerodyn;mic coeigicients are normally referenced to the theoretical
wing area, although other areas may be used, and careful definitiom is
required. The aerodynamic coefficients of wall-mounted semisban wing (or
panel) models are generally referenced to the exposed wing area, and the
results are normally comparable with full-span wind tunmel or flight data.

The KC-135A semispan model wing was directly attached to the wall
mounted balance systsm; however, that portion next to the tunnel wall was
shielded by the model body. The body pitched as the wing angle of attack
was changed; however, the fuselage was completely isolated and no body
loads were recorded. The body had a slot through which the wing passed.
The wing was designed so that the tip deflected approximately the same as
the tip of the full-scale airplane at cruise conditions. The aerodynamic
coefficients of the KC-135A semispan model are referenced to the area of
that portion of the wing outboard of the body, i.e., the exposed wing Aarea.
Data obtained are, therefore, for the exposed wing (plus winglets) in the
presence of, but not attached to, the model body.

The full-span KC-135A model was mounted in the center of the tunnel
test section on a sting-supported six-component balance system. The model
wings were rigid and did not deflect aeroelastically. The aerodynanic
coefficients are referenced to the theoratical wing area.

Cowparison of the incremental lift and drag obtained with the 0.035-

scale full-span model ant the 0.07-scale semispan model with different

30
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wvinglet configurations is shown in Figurea 94 to 97 for Mach numberz <f
0.70 and 0.78. Agreement of the data from the two different models :s

generally very good, however, some differences exist in the lift <t M = 0.78.
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Figure 72, Effect of Winglet Loss on KC~135A Model Yawing
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Figure 77. Effect of Winglets on KC~135A Aircraft Drag
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Figure 86. Variation of Pitching Moment of Basic KC-1354
Model with Lift and Flap Deflection. M = 0,30.

iH = ~10 Degrees
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